
Solution to Tipler P30.54—C.E. Mungan, Spring 2001

Part of the length of a piece of wire is wound into a solenoid. The remaining length is used to
wind a second solenoid around the first in the opposite direction, as sketched below. Suppose the
inner solenoid has N1 turns, length l1, and radius r1 while the outer one has N2 turns, length
l2 ≥ l1, and radius r2 ≥ r1. Estimate the overall inductance of this double coil.

This problem cannot be solved unless we have an expression for the magnetic field produced
everywhere by a solenoid. It is reasonable to suppose each solenoid is wound tightly enough that
there is negligible flux leakage between the windings. Clearly one would like to similarly neglect
end effects. The problem is that the ends of the first solenoid lie inside the outer solenoid and
hence the divergence of the field lines out of the ends of the inner solenoid must be explicitly
accounted for. The only way around this problem is to make l l l1 2 1>> −  so that the regions of
the outer solenoid beyond the ends of the inner solenoid make a negligible contribution to the
inductance of the device.

This is equivalent to adopting the following model for the solenoidal magnetic field: B is
uniform and equal to µ0nI  inside a cylinder of length l and radius r, and sharply drops off to
zero not only at larger radii as usual, but also at positions beyond the ends of the solenoid even
near the axis of symmetry. Physically this is unsatisfying because it means the field lines
suddenly terminate at the ends of the coil. But the alternative of allowing the field lines to
continue in a tube extending to infinity leads to the following contradiction. The flux through the
outer solenoid due to the magnetic field generated by the inner solenoid is then

Φ21 2 1 1 2 2 0 1 1
2

21= = ≡N B A n l n I r M I( )( )( )µ π , (1)

in accord with Tipler Eq. 30.13. On the other hand, the flux through the inner solenoid due to the
magnetic field generated by the outer solenoid is

Φ12 1 2 1 1 1 0 2 1
2

12= = ≡N B A n l n I r M I( )( )( )µ π . (2)

But now M M12 21≠  in contradiction to the central tenet of mutual inductance! The quickest fix
is to cut off B1 at the ends of the inner solenoid. In that case, the field due to the inner solenoid
does not link all of the turns of the outer solenoid, but only n l2 1 of them (assuming a uniform
winding density). Hence Eq. (1) gets modified to

Φ21 2 1 2 1 1 2 1 0 1 1
2

21= = ≡( / ) ( )( )( )N l l B A n l n I r M Iµ π , (1')

so that we now properly have M M M12 21= ≡ .
Let’s apply this simple model for the magnetic field of a solenoid to solve the stated problem.

The geometry is sketched at the top of the next page, assuming the current comes out of the page
at the top of the inner solenoid and runs into the page at the top of the outer solenoid. Computing
the total flux through each solenoid using the right-hand rule to get the positive direction for the
unit normal to a coil relative to the current direction in that coil gives
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where the self-inductances of each solenoid are
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2= =µ π µ π/ /and . (4)

Equation (3) is consistent with Tipler Eq. 30.11, noting that the currents I1 and I2 through the two
solenoids are in opposite directions. If you like, Eq. (3) says the total flux equals the “self flux”
plus the “mutual flux.”

Finally, the net flux of the entire device is given by the sum of the fluxes through each coil
and hence the overall inductance is
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Substituting the numbers given in P30.54 gives L = 7.9 mH.


